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The cholesteric± smectic A transition

L. BENGUIGUI

Solid State Institute and Department of Physics,
Technion-Israel Institute of Technology, 32000 Haifa, Israel

(Received 6 April 1998; accepted 25 May 1998 )

Instead of studying the cholesteric± smectic A transition from the analogy with super-
conductors, we present a direct investigation of the properties of this transition. The transition
is of ® rst order and a very simple relationship between the four basic lengths (correlation
length, penetration length, layer spacing of the smectic structure, and pitch of the cholesteric
structure) exists at the transition temperature. We calculate the wall energy separating a
cholesteric region from a smectic region in two di� erent con® gurations. For one of them, we
recover the de® nition of the type I (positive wall energy) and type II (negative wall energy)
smectics A. We do not ® nd a speci® c value of the Ginzburg± Landau parameter kc which gives
the distinction between the two types of smectics; kc is a function of the product of the
perpendicular correlation length and the wave vector of the smectic density modulation. We
recover the well known value from the superconductor analogy, kc =1/ Ó 2, only if this product
is large and the rotation of the director inside the wall is small. For the second con® guration,
the wall energy is always positive and there is no analogy with superconductors. Finally, we
discuss brie¯ y two di� erent possibilities of mixed phases.

1. Introduction Landau theory of modulated systems. Then the thermo-
dynamics of the Ch± SmA transition are presented. SinceThe idea of writing an article on the cholesteric±
this transition is always ® rst order, coexistence of thesmectic A transition arose when preparing a course on
two phases is possible with a wall separating them. Theliquid crystals for graduate students. I asked myself if
energy of the wall (in two di� erent con® gurations) isthe best way to expose the properties of the Ch± SmA
calculated and it is shown that in some circumstancestransition is to begin with the normal-superconductor
the wall energy is negative, i.e. the appearance of non-transition, as is usually done in a textbook [1]. The
homogeneous structures is energetically favourable.beautiful analogy, made by de Gennes [2], between
Finally, we shall discuss some possible structures forthese two transitions contributed to the discovery of
these particular phases.new smectic phases like the twist grain boundary (TGB)

Although the orginal motivation of this paper wasphases [3]. However, for those who want to learn about
pedagogical, in fact we have new results which we hopethe properties of the Ch± SmA transition and do not
will contribute to a better understanding of the Ch± SmAhave knowledge of superconductivity, it seems more
transition.logical to begin directly by the study of the Ch± SmA

transition. Then, the analogy can be made, but now in
the inverse direction. 2. The free energy

One important point is to understand how non- We shall begin with the SmA phase and give a
homogeneous structures such as those of the TGB phases derivation of the de Gennes free energy from the Landau
can exist. It is usually to distinguish between type I and theory of phase transitions. Although the de Gennes free
type II smectics A and one of the purposes of this paper energy is well known, some confusion still exists. The
is to give their de® nition. Of course, we shall follow the following derivation was presented very brie¯ y by Chen
same procedure as that used in the study of super- and Lubensky [5]. The free energy of the cholesteric
conductors [4], but the results are not identical (as phase will be discussed later.
often assumed), and this study suggests some di� erence Since the SmA phase has a modulated structure, it is
between smectics and superconductors. natural to apply the Landau theory of these structures

This paper is organized as follows. First we shall [6]. Basically, there are two kinds of modulated phases:
those for which the Lifshitz invariant is permitted byderive the de Gennes free energy of smectics from the
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506 L. Benguigui

the symmetry and those for which it is forbidden. If one terms are omitted):
denotes by Y the complex order parameter, the Lifshitz
invariant is (Y* = Y Õ Y = Y*) . Its inclusion in the Landau G =

1

2 P { |Y0 |2 (a + C //q
2
z + D //q

4
z )

free energy corresponds to structures for which the
state de® ned by Õ q (when q is the wave vector of the

+
1

2
u|Y0 |4 + |qY0 /qz|2 (C//+ 6q

2
z D // )modulated structure) is not equivalent to the state q.

Classical examples are helicoidal structures like heli-
magnetics or SmC* phases. Since in smectic A phases + iqs (C //+ 2q

2
z D // ) (Y0qY

*
0 /qz Õ Y

*
0 qY0 /qz)

the states q and Õ q are equivalent (this merely corre-
+ D // |q2

Y0 /qz
2 |2sponds to change of the origin) the Lifshitz invariant is

forbidden. + 2iqzD // (q2
Y0 /qz

2qY
*
0 /qz Õ q2

Y
*
0 /qz

2qY0 /qz)

The Landau order parameter gives the change in the
+ C)[ (q

2
x+ q

2
y ) |Y0 |2 + |qY0 /qx |2 + |qY0 /qy|2local density

+ iqx (Y0qY
*
0 /qx Õ Y

*
0 qY0 /qx )

Y (r) =Y0 (r) exp ( iqs ¯ r) . (1 )
+ iqs (Y0qY

*
0 /qy Õ Y

*
0 qY0 /qy) ] } dV . (5 )

In equation (1), r is the vector position, and qs the wave
Taking into account that qx $qznx and qy$qzny , wherevector of the density modulation. In the following, we
nx and ny are the components of the nematic director inshall choose the z direction to be perpendicular to the
the layer plane, the C) term can be written assmectic layers and the xy plane as that of the layer. The

Landau free energy is a functional of the order parameter C)[ (q/qx Õ iqznx )Y0 (q/qx + iqznx )Y0
and of its derivatives up to second order [6]:

+ (q/qy Õ iqzny )Y0 (q/qy + iqsny )Y0] . (6 )

The minimization relatively to qz seems now very com-G =
1

2 P [a|Y |2 + u/2 |Y |4 + C // |qY/qz|2+ D // |q2
Y/qz

2 |2

plicated. We shall use a very convenient approximation,
namely that the deformation of the layers is small.+ C)( |qY/qx |2+ |qY/qy|2 ) ] dV . (2 )
Consequently we have qz$ qs given by equation (4).
The ® nal form for the free energy isThe coe� cients u, D // and C) are positive but, as shown

below, C // must be negative in order that the modulated
phase may be stable. As usual in the Landau theory, a G =

1

2 P { |Y0 |2 (a Õ C
2
// /4D // ) + u/2 |Y0 |4

is a linear function of the temperature, a =a0 (T Õ T0 ).
We do not include second derivatives of Y relative to x Õ 2C // |qY0 /qz|2 + D // |q2

Y0 /qz
2 |2

and y since we chose C) positive (the case C)<0
+ iC // (q2

Y0 /qz
2qY

*
0 /qz Õ q2

Y
*
0 /qz

2qY0 /qz)corresponds to the SmC phase which is not considered
here). + C)[ |(q/qx Õ iqsnx )Y0 |2

First, we shall consider a homogeneous smectic A
+ | (q/qy Õ iqsny )Y0 |2]} dV . (7 )sample, for which Y0 is constant and the density modu-

lation is in the z direction, Y (z)=Y0 exp( iqsz) . Inserting This is the de Gennes free energy which is deduced from
Y (z) in equation (2) gives the free energy (per unit the Landau free energy from minimization relatively to
volume)

qz . In general, terms including second derivatives are
not taken into account and we shall do the same in the

G =
1

2
aY

2
0+

1

4
uY

4
0 +

1

2
C //q

2
s Y

2
0 +

1

2
D //q

4
s Y

2
0 . (3 ) following.

To conclude this section, two remarks are made.
Firstly, the two order parameters, that of Landau Y (r)From the condition of minimization relative to the wave
and that of de Gennes Y0 (r) are clearly not the same.vector qs , one has
The de Gennes order parameter is only the complex

Y
2
0 ( 2C //qs+ 4D //q

3
s ) =0 amplitude of the Landau order parameter. Secondly,

even if Lifshitz terms can appear in the de Gennes free
or energy, in the Landau free energy they are forbidden.

q
2
s = Õ C // /( 2D // ) . (4 )

3. The cholesteric± smectic A transition

We consider now a homogeneous sample and weNow, we consider the general case where Y0 varies in
space. Inserting equation (1) into (2) gives G (some suppose that it is cholesteric at high temperature and

becomes smectic A at a lower temperature. The freeterms can be integrated by parts and the resultant surface
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507T he cholesteric ± SmA transition

energy per unit surface of the cholesteric phase is written 4. The wall energy

In all this section, we consider a sample which is[1] as
exactly at the Ch± SmA transition temperature. Since the
transition is ® rst order, the system can exist either inGCh=

1

2 P K2 (n ¯ curl n Õ q0 )
2 dz

the Ch phase or in the SmA phase. The case we shall
study in detail is when one part of the sample is in

or the Ch phase and another is in the SmA phase and the
two parts are separated by a wall in which there is a

GCh=
1

2 P K2 (dh/dz Õ q0 )
2 dz (8 ) progressive passage from one structure to the other. This

section is devoted to the calculation of the wall energy
in two di� erent con® gurations and this will give us theif one supposes that the helix axis is parallel to the z

distinction between smectics of type I and type II relativedirection. K2 is the twist elastic constant and q0 is
to the twist.the wave vector of the helix structure. This energy is

One can imagine two di� erent con® gurations for aminimized by dh/dz=q0 , such that at equilibrium the
wall. In the ® rst (see ® gure 1), the side y = Õ 2 ischolesteric free energy is null.
smectic with the layers parallel to the xy plane and onNow in the smectic phase, we have to introduce the
the side y =2, the sample is cholesteric with the helixenergy 1/2K2 q

2
0 which is the energy necessary to unwind

axis parallel to the y axis. Passing from the side y <0the cholesteric structure. The free energy used to describe
to the side y >0, the smectic order parameter decreasesthe Ch± SmA transition is [r is equal to a Õ C

2
// /4D // of

until it becomes zero when the director changes itsequation (7 )]
direction from the z axis and begins rotating around the
y axis. The nematic director always remains in the xz

G =
1

2 P [r|Y0 |2 + u/2 |Y0 |4 + K2 (dh/dz Õ q0 )
2] dz.

plan and its direction is given by the angle h. In the
second con® guration ( ® gure 2), the wall is perpendicular

(9) to the z direction when the side z � 2 is in the
cholesteric state with the helix axis parallel to z. On theIn the cholesteric phase, G =0 and in the smectic A
side z � Õ 2, the sample is smectic in the same situationphase we have (per unit volume)
as in the ® rst con® guration. Now the smectic order
parameter decreases when passing from z <0 to z>0.

GA=
1

2
r|Y0 |2 + u/4 |Y0 |4 +

1

2
K2q

2
0 (10)

At the same time the director begins to rotate and to
change its direction. In this con® guration, two angles

where r= r0 (T0 Õ T ). From the minimization con- (Q and h) give the direction of n.
dition qGA /qY0=0, one gets |Y0 |2= Õ r/u and
GA= Õ r

2
/4u + 1/2K2 q

2
0 . The transition is given by 4.1. T he ® rst con® guration

GA=0, or r
2=2K2 q

2
0u and the transition temperature The free energy (per surface unit) adapted to the

is con® guration shown in ® gure 1 is
TCh± A=T0 Õ ( 2K2q

2
0u)

1/2
/r0 . (11)

G =
1

2 P [r|Y0 |2 + u/2 |Y0 |4+ C)| (d/dy Õ iqsny )Y0 |2
A nematic phase is the limit of a cholesteric phase

for q0 � 0, and in this case TNA=T0 . The ® rst order
+K2 (n ¯curl n Õ q0 )

2] dy (13)character of the transition can be seen by comparison
of the entropy S in the two phases at TCh± A : in the Ch
phase, SCh=0 but in the SmA phase SA= Õ dGA /dT ,
or SA= r0 (2K2 q

2
0 )1/2

/2u. The jump of the entropy at the
transition is the clear indication of a ® rst order transition.
This can also be seen by the discontinuity of the smectic
order parameter at the transition temperature:

Y0 (TCh± A ) = ( 2K2 q
2
0 /u)

1/2 (12)

which goes to zero with q0 .
It is important to emphasize even at this stage that

Figure 1. First con® guration of a wall between a smectic
the appearance of the various TGB phases is a direct structure ( y <0) and a cholesteric structure ( y >0) at the
consequence of the ® rst order nature of the Ch± SmA Ch± SmA transition. The director is parallel to the z axis

in the smectic phase and rotates in the cholesteric phase.transition, as we shall see below.
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508 L. Benguigui

and since q
2
s C)/ |r| is a pure number, one can choose l2

such that

K2 u/l
2
2 q

2
s |r|C)=1 (16)

when one gets

l
2
2=K2 u/C)q

2
s |r|. (17)

One can write the free energy (14) in the following
form

g/4 =l2 /2 P C Õ f
2+

1

2
f

4 + j
2
)q

2
s sin2

h f
2

+ (1/k
2
) (d f /dY )

2+ j
2
)q

2
s (dh/dY Õ q0l2 )

2 D dY

(18)

where k is equal to l2 /j). In the frame of the theory of
superconductors, it is called the Ginzburg± Landau para-
meter. Here we shall call it the perpendicular Ginzburg±
Landau parameter; its importance is discussed below.
Although j) and l2 are temperature dependent through
r, their ratio is not.

Four characteristic lengths have been introduced:

(a) q Õ
1

s , the inverse of the wave vector of the densityFigure 2. Second con® guration of a wall between a smectic
modulation of the smectic structure;structure (z<0) and a cholesteric structure (z>0).

( b) q Õ
1

0 , the inverse of the helix pitch of the cholesteric
structure;where Y0 and h are functions of y (nx = sin h, ny=0,

(c) j), the perpendicular correlation length;nz=cos h). Since the temperature is that of the transition,
(d ) l2 , the penetration length relative to the twist,where both phases have zero free energy, G is in fact the

justi® cation of this name is given below.energy of the wall. We have to determine the functions
Y0 ( y) and h ( y) by minimizing expression (13) with the There is a very simple relation between these four lengths
conditions of this con® guration: at the Ch± SmA transition. We saw in the preceding

section that at the transition,y � Õ 2, Y
2
0= Õ r/u (as calculated above) ,

h=0, dh/dy =0; y � 2, Y0=0, dh/dy=q0 .
Õ r

2
/4u +

1

2
K2 q

2
0=0 (19)

Before performing the minimization procedure with
the help of the Euler± Lagrange equations, we shall and with the help of the de® nitions of j) and l2

normalize G , Y0 and y. We write G = (r2
/4u)g, equation (19) becomes

Y
2
0= (Õ r/u) f

2 and y =l2Y , where l2 is a length which
2q

2
s q

2
0j

2
)l

2
2=1. (20)will be de® ned later. From equation (13), one obtains

This important relationship will be used several times
in the following.g/4 =l2 /2 P C Õ f

2+
1

2
f

4+ (C)q
2
s / |r|) sin2

h f
2

The Euler± Lagrange equations [q /qh=q(q/qh ¾ )/qY ,
q/q f =q(q/q f ¾ )/qY , where h ¾ =dh/dY and f ¾ =d f/dY ]+ (C)/l

2
2 |r| ) (d f /dY )

2

are:

+ (K2 u/l
2
2 r

2
) (dh/dY Õ q0l2 )

2D dY . (14) Õ f + f
3 + j

2
)q

2
s f sin2

h Õ 1/k
2
(d2

f/dY
2
) =0

(21 a)
The quantity (C)/ |r| )1/2 is well known; it is the per-

j
2
)q

2
s ( f

2 sin h cos h Õ d2
h/dY

2
) =0. (21 b)pendicular correlation length j). The quantity K2 u/l

2
2 r

2

must be dimensionless, and so we can write
From these two equations it is possible to ® nd a ® rst
integral. Multiplying equation (21 a) by d f/dY and (21 b)K2 u/l

2
2 r

2= (K2u/l
2
2 |r|C)q

2
s ) (q

2
s C)/ |r| ) (15)
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509T he cholesteric ± SmA transition

by dh/dY , summing and integrating gives: In the Appendices A (type II) and B (type I), the
calculations of g, f (Y ) and h (Y ) are included, and here
we shall give only the results. For type II, an easyf

2+
1

2
f

2 Õ 1/k
2
(d f/dY )

2

calculation can be made if one supposes that inside the
wall (i.e. in the region where d f /dY is di� erent from 0)+ j

2
)q

2
s [ f

2 sin2
h Õ (dh/dY )

2]=Cs . (22)
the angle h remains small. The criterion for the smallness

The unknown constant Cs is easily determined by one of of h is that j
2
)q

2
s %1 which is not a very strong condition

the following conditions: on the smectic side (Y = Õ 2 ) since near the transition the correlation length j) is
f =1 and h=0, dh/dY =0, or on the cholesteric side often much larger than the layer spacing d =2p/qs . In
(Y =2 ) , f =0 and dh/dY =q0l2 . In both cases, one this approximation (which we shall call the super-
® nds Cs= Õ 1/2. With the help of equation (20), the conductor approximation, because the analogy with
® rst integral (22) can be written as superconductors is complete) the wall energy g is equal

to Õ 1.1 l2 and the variations of f and h near Y < 0
Õ f

2+
1

2
f

4+ j
2
)q

2
s f

2 sin2
h=1/k

2
(d f/dY )

2

are given by (we chose Y =0 as the end of the wall, i.e.
f =0 for Y >0 ) :

+ j
2
)q

2
s [ (dh/dY )

2 Õ q
2
0l

2
2]. (23)

h$ hm exp (Y / Ó 2 ) =hm exp ( y/l2 Ó 2 ) (26)
In principle, to calculate g, it is necessary to ® nd f (Y )

f =1 Õ j
2
)q

2
s h

2 (27)and h(Y ) [using two of the three equations (21 a), (21 b)
and (23)], then to introduce them in (18) and to perform where hm=1/(j)qs ) is the value of h at the end of the
the integration. For the time being, we shall not consider wall. The variations of h and f are given schematically
the most general case, but only show that in the two in ® gure 3. It is noted that inside the wall, one has f Þ 0
extreme cases k

2&1 and k
2%1 the sign of the wall and also h>0. This can be seen as the penetration of

energy g is di� erent. Afterwards we shall calculate the cholesteric structure into the smectic structure. This
explicitly g, f (Y ) and h(Y ) in these two limiting cases. is the reason for calling l2 the penetration length and it
Finally, numerical calculations will be presented. is the characteristic length of the wall. If the super-

With the help of equations (21 a), (21 b) and (23), conductor approximation is not valid, the expressions
there are several possible ways to write the free energy (26) and (27) are still correct, but the wall energy is
g. For the present purpose, it is convenient to replace given by a complicated expression in which the product
the three ® rst terms of the integral (18) by the right side j)qs appears explicitly.
of (23) and g is now:

g/4 =l2 P [ 1/k
2
(d f/dY )

2

+ j
2
)q

2
s (dh/dY ) (dh/dY Õ q0l2 ) ] dY . (24)

If k
2&1, the ® rst term in equation (24) is negligible and

g reduces to

g/4 =l2 P j
2
)q

2
s (dh/dY ) (dh/dY Õ q0l2 ) dY . (25)

The derivative dh/dY is an increasing function from 0
in the smectic region to the value q0l2 in the cholesteric
region; thus we have the inequality dh/dY <q0l2 (this
is also shown in Appendix A). Consequently the wall
energy g is negative.

Now if k2%1, the ® rst term 1/k
2 (d f/dY )

2 in
equation (24) is the most important and this shows that
the wall energy is positive. This is the distinction between
the type II smectic A for which the wall energy is
negative and the type I smectic A for which the wall
energy is positive. In the ® rst case (type II), the wall is
stable and there is a tendency for the system to form Figure 3. Schematic variations of the normalized smectic
mixed phases like the TGB phases. In the second case order parameter f , the angle h (see ® gure 1 ) and its

derivative dh/dy in the case of a type II smectic A.(type I) the wall is unstable and tends to disappear.
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510 L. Benguigui

For type I, the wall energy is g = (4 Ó 2/3)l2 /k This means that in order to calculate the two functions
f (Y ) and h(Y ), we now have three equations: as above,k=(4Ó 2/3)j). The structure of the wall is without pene-

tration: on the side Y <0, f is di� erent from 0 but h=0 the two Euler± Lagrange equations (or one of them and
the ® rst integral ) and the equation (30). This is possibleand on the side Y >0, f =0 and h =q0l2Y =q0y. This

discontinuity in dh/dY means that the director begins only for a particular choice of k that we shall try to
determine. We shall calculate the ® rst integral (23) usingto rotate only from the point Y =0. The schematic

variations of f and h are given in ® gure 4. From (30) and the following relationship is deduced from (30):
Appendix B, one has

f
2
(d f /dY )

2=
1

2
j

2
)q

2
s (d2

h/dY
2
)
2
. (31)

f (Y ) =0 for Y >0

f (Y ) = th[ ( |Y |k/2 )
1/2] for Y <0.

(28)
One gets

The characterisic length is now the perpendicular f
4 sin2

h=1/( 2k
2
) (d2

h/dY
2
)
2
. (32)

correlation length (since Y k =y/j)) while it is the pene-
This last expression can be compared with the secondtration length in the case of type II smectics A. The
Euler± Lagrange equation (21 b) that we write in thestructure of the wall for type I is very similar to that at
following forma wall at a ® rst order nematic± smectic transition.

Since for k
2&1, the wall energy is negative and for f

4 sin2
h cos2

h= (d2
h/dY

2
)
2
. (33)

k
2%1 it is positive, we shall try to ® nd the value of k

The expressions (32) and (33) are compatible only if
for which g =0. First, we shall write g in a new form

2k
2=cos2

h. In other words k must be a function of h
(of course, equivalent to those we proposed above). In

in order that the wall energy g will be zero. This seems
Appendix C, we show that

paradoxical since we saw above the two limits of k for
which there is a change of sign of g. However, in the

g/4 =l2 /2 P [ Õ f
4
/2 + j

2
)q

2
s (dh/dY Õ q0l2 )

2] dY . superconductor approximation, the angle h is small and
cos h$ 1 and one recovers the superconductor result,

(29) kc=1/ Ó 2.
To solve this paradox we have to pay attention to howThis expression is interesting since it shows how g can

the condition g =0 was reached. We put the integrandbe positive or negative as it is the di� erence of two
in equation (29) equal to zero and consequently g =0.positive quantities. Writing g =0 gives from (29)
But there is another possibility, namely that the integral

f
4=2j

2
)q

2
s (dh/dY Õ q0l2 )

2
. (30) giving g is null without the integrand being null also,

clearly, this is the more general way to solve the problem,
but it can be done only numerically.

We performed a numerical resolution of the Euler±
Lagrange equations (21 a) and (21 b) and also calculated
numerically the wall energy g from (18). We chose a
series of values of k and also of the second parameter
j)qs that we shall call a for convenience ( for details on
the numerical calculations, see Appendix D). The results
are given in ® gures 5 and 6.

In ® gure 5 the quantity g/l2 is plotted as a function
of k for a =1 and a =10. The curve corresponding to
a =10 crosses the k axis at kc=0.7, very near the
superconductor value kc=1/ Ó 2=0.707. This means
that, as mentioned above, we recover the superconductor
approximation if a is large enough. However, for a =1,
the critical k is now larger and is close to 1.25. In
the strong type II region (k >5), g/l2 is equal to Õ 1.1,
in excellent agreement with the value found above,
independently of the value of a.

In ® gure 6, the same quantity as in ® gure 5 is plotted
as a function of a, for k =1. For large values of a, weFigure 4. Schematic variations of the normalized smectic
are in the type II regime, as in the superconductororder parameter f , the angle h, and its derivative dh/dy

in the case of a type I smectic A. approximation, but for smaller values one enters the
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511T he cholesteric ± SmA transition

Figure 5. Variation of the wall
energy divided by the pene-
tration length ( g/l2 ) with the
Ginzburg± Landau parameter k

for two di� erent values of the
product a=j)qs (perpendicular
correlation length Ö smectic
wave vector).

Figure 6. Variation of the ratio
g/l2 with a for k =1. This curve
shows that one can pass from
type I to type II by varying the
product j)qs while keeping k

constant.

type I region. For given k, it is also possible to ® nd a there is also bending characterized by the elastic constant
K3 . The direction of n is given by two angles h and Qcritical ac which separates the two types. In our example

(k =1), ac is close to 1.5. (see ® gure 2). We have now three functions which
describe the system (Y0 , h, Q) and these functions areTo conclude this section, it can be said that, as in the

case of superconductors, it is possible to de® ne two types functions of z only. The free energy is² :
of smectic A. However, the classi® cation depends on
two parameters and not just one as for supercondutors. G =

1

2 P [r|Y0 |2 + u/2 |Y0 |4 + C // |dY0 /dz|2

Contrarily to superconductors, there is no universal
value of k separating the two types. However, one ® nds + C)q

2
s (n

2
x + n

2
y ) |Y0 |2 + K2 (n ¯ curl n Õ q0 )

2

the superconductor approximation when the parameter
+ K3 (n Ö curl n)

2] dz (34)a =j)qs is large enough.

and the components of n are: nx=cos Q sin h, ny=
4.2. T he second wall con® guration sin Q sin h and nz=cos h. The free energy written as a

In this con® guration, shown in ® gure 2, the free energy
is much more complicated than in the preceding case.
Besides the appearance of the twist of the director when ² In equation (34) C// is chosen positive, contrary to the

choice in the section on the free energy.passing from the smectic side to the cholesteric side,
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512 L. Benguigui

function of Y0 , h, Q is: physical reason for that is the gradual change in the
direction of n, as h passes from 0 to p/2. From the point
of view of the energy cost, this is very expensive. TheG =

1

2 P [r|Y0 |2 + u/2 |Y0 |4+ C // |dY0 /dz|2

structure of the wall is quite di� erent from that in the
preceding case. On the side Z <0, f decreases until it+ C)q

2
s sin2

h|Y0 |2 + K3 cos2
h(dh/dz)

2

is equal to zero, with or without penetration of the
+ (K3 cos2

h + K2 sin2
h) sin2

h(dQ/dz)
2

cholesteric structure, depending on the value of k2 . On
the side Z >0, the director rotates as in a cholesteric+ 2K2q0 sin2

h (dQ/dz)+ K2 q
2
0] dz. (35)

phase, but it makes with the helix axis an angle h smaller
than p/2. The angle h increases linearly with a slope

We follow exactly the same procedure as above to equal to q0 / Ó 2 until it becomes equal to p/2.
normalize the free energy. For that we de® ne: j//= To conclude this section, we emphasize that the choice
[C // / |r|]

1/2, parallel correlation length, l
2
3= (K3u/C)|r|q2

s ), of the temperature as equal to TCh± A makes the calcu-
the penetration length relative to the bend, k2=l2 /j// , lations relatively easy because it is possible to use the
the parallel Ginzburg± Landau parameter and Z = z/l2 .

relation (20) which is valid only at TCh± A .
One gets:

g/4 =
1

2
l2 P G Õ f

2 +
1

2
f

4+ 1/k
2
2 (d f/dZ )

2

5. MGB phase versus TGB phase

We now wish to discuss brie¯ y the existence of mixed
+ j

2
)q

2
s [ f

2 sin2
h(l3 /l2 )

2 cos2
h(dh/dZ )

2
phases which are neither homogeneous cholesteric nor
smectic. Although the calculation of the wall energy was+ (l3 /l2 cos2

h + sin2
h) sin2

h(dQ/dZ )
2

made only at TCh± A , the results are valid in the vicinity
of this temperature. In the case of type II smectics, one+ 2q0l2 sin2

h(dQ/dZ ) + q
2
0l

2
2] HdZ. (36)

can understand that, since the energy of a wall is negative
(comparatively to the zero free energy of the cholestericFor the normalization of the length, we take the same
phase), the system may prefer a state which is a mixturepenetration length as above. It is also possible to de® ne
of smectic and cholesteric (to have the possibility ofanother one by replacing C) in equation (16) by |C // |.
creating walls). Two structures have been proposed forAs a consequence, it is necessary to replace j) by j// in
the mixed state: the melt grain boundary phase [7](36), but the results are clearly unchanged. As above,
(MGB phase) and the twist grain boundary phase [3]we have in principle to ® nd the three functions which
(TGB phase). In both cases, the sample is divided intominimize expression (36). But it is possible to show
smectic regions and the director rotates by a small anglewithout solving all the Euler± Lagrange equations that
when passing from one smectic region to the neigh-the wall energy is always positive. We shall do that in
bouring smectic region. The di� erence in the two modelsthe approximation K2$ K3 and l2#l3 .
lies in the nature of the interface between two smecticThe ® rst step is to write the Euler± Lagrange equation
regions.for Q(Z ), that is q/qQ=q(qqQ ¾ )qZ , Q ¾ =qQ/qZ Ð and to

In the MGB phase, the smectic order parametersolve this equation. One gets dQ/dZ =q0l2 when h is
decreases from its value in a smectic region to zerodi� erent from zero. The second step is to introduce this
inside the interface and increases again in the neigh-value of Q ¾ in equation (36) and to write the two Euler±
bouring smectic region. The director rotates in theLagrange equations for f and h. Applying the same
interface such that the interface is exactly the wallmethod as above it is possble to get a ® rst integral:
described in the preceding section. It is not excluded

Õ f
2 + f

4 + j
2
)q

2
s [ f

2 sin2
h Õ cos2

h(dh/dZ )
2]

that there is also a small rotation of the director inside
Õ 1/k

2
2 (d f/dZ )

2 + 1/2 cos2
h=0. (37) the smectic region. This is because near TCh± A the smectic

order parameter is small, and also because in this rangeWith the help of equation (37), one may write the free
of temperatures the penetration length is large. Slightlyenergy g as
above TCh± A , but below T0 (where the smectic phase
becomes stable) the system ® nds advantage by creating

g/4 =
1

2
l2 P [1/k

2
2 (d f/dZ )

2+ j
2
)q

2
s cos2

h (dh/dZ )
2] dZ

walls with negative energy, even if the free energy of
the smectic regions is positive. However, below TCh± A

(38) the free energy of the smectic regions becomes negative,
and at low enough temperatures the smectic free energywhich is always positive. So in this con® guration there

is no place for distinction between type I or type II. The density is lower than that of a wall and a mixed state
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513T he cholesteric ± SmA transition

is not energetically advantageous. This explains, in a The author thanks Professor C. Kuper for comments
on the manuscript and Professor L. Pitaevskii for usefulqualitative way, how an MGB phase can appear between
discussions and his suggestion to perform the numericalthe cholesteric phase and a smectic phase.
calculations.In the case of the TGB phase, the interface is made

up by a line of screw dislocations. The advantage of a
Appendix Ascrew dislocation is that it is possible to increase the

In this Appendix, calculations of the wall propertiesratio of the surface free energy to the bulk free energy.
of type II smectics A are presented. We shall follow theHowever, it costs energy to make a dislocation and this
program indicated above: solve the Euler± Lagrangemust be taken into account. The argument developed
equations, insert the solutions in the free energy andabove for the MGB phase can be repeated here without
calculate the integral. We again write the Euler±change.
Lagrange equations (21 a) and (21 b) using the conditionCalculations of the free energy of the MGB phase
k

2&1:have not been made, so that it is impossible, at the
present stage, to determine which phase is the more Õ f + f

3 + j
2
)q

2
s sin2

h=0 (A1)
stable. Renn and Lubensky [3] presented calculations

f
2 sin h cos h=d2

h/dY
2
. (A2)of the transition temperatures between the cholesteric

and the TGB phases and between the TGB and smectic From equation (A1) we get (in the region where f Þ 0 )
A phases. They made the assumption that the super-

f
2=1 Õ j

2
)q

2
s sin2

h. (A3)conductor± smectic A is perfect so that they would use
all the results known for superconductors. In particular, Since f

2 cannot be negative, we ® nd that f is zero for
it was established in 1969 [4] that the equivalent of an h larger than a speci® c value hm given by sin hm =
MGB phase (the laminar phase) is less stable than the 1/(j)qs ). We can now insert equation (A3) into (A2) to
Abrikosov phase made up of an array of vortices. Dozov give a di� erential equation for h (Y ) :
[7] claimed that the TGB phase is more stable than the

d2
h/dY

2= sin h cos h( 1 Õ b
2 sin2

h ) (A4)MGB phase in the case of a smectic A phase. However,
if it is a smectic C* phase, an MGB phase is the more with b =j

2
)q

2
s . It is possible to integrate equation (A4)

stable. The properties of the smectic C* phase are once multiplying the two sides of (A4) by dh/dY and
beyond the scope of this paper and we shall not deal taking into account the condition that for h=hm ,
with them. dh/dY =q0l2 . This condition is related to the fact that

As a ® nal remark about the existence of the TGB f is null (i.e. the structure is that of the cholesteric
phase, we refer to the experimental results of Goodby phase) for h > hm . We choose also Y =0 at the point
et al. [8]. These authors determined the phase diagram where f becomes null. We then get (again using relation
of a homologous series of compounds which may exhibit (20) to show that the integration constant is null ):
one of the two sequences of phases: I± SmA± SmC* or
I± SmA*± SmC* where the SmA* phase is the TGB phase. dh/dY =Ô sin h A 1 Õ

1

2
sin2

h/sin2
hmB

1/2

. (A5)
It should be interesting to check if the appearance of
one or the other sequence is related to the change from From equation (A5), one sees that when dh/dY >0
type I to type II, because of the change of the relevant (see ® gure 3) then
characteristic lengths.

dh/dY <
1

2
sin hm=1/( 2j)qs ) = (qsl2 )/ Ó 2 <q0l2

6. Conclusion
(A6)We have studied the cholesteric± smectic A phase

transition without using the analogy with super- which is another justi® cation of the negative value of g;
conductors. We have presented the de® nition of type I see equation (25). The integration of equation (A5)
and type II smectics A and the criterion for their is straightforward if one assumes hm to be small, i.e.
distinction. The analogy with superconductors is not if j)qs&1. If one takes, as an example, j)$ 50 AÊ and
always perfect. A strict parallelism exits only under for the layer spacing 25 AÊ , one gets j)qs=4p which
a particular condition: j

2
)q

2
s &1 or q

2
0l

2
2%1 at the is enough for the above condition to be ful® lled.

Ch± SmA transition. In general, the Ginzburg± Landau Equation (A5) can be written in the following form
parameter which gives the distinction between the two which makes it possible to calculate Y (h) :
types is dependent on the product j)qs (or the product
q0l2 ) . Finally we have discussed brie¯ y how mixed states dY /dh=h Õ

1C 1 Õ
1

2
(h/hm )

2D Õ
1/2

. (A7)
between cholesteric and smectic phases can appear.
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514 L. Benguigui

The solution of equation (A7) is for f (Y ) which can be written as

Õ f + f
3 Õ 1/k

2
(d2

f /dY
2
) =0. (B2)

Y = log
1 +[ 1 Õ (h/2hm )

2]1/2

(h/hm Ó 2 )
+ C (A8)

In a less formal way, it is possible to see that the
which on inversion gives limit k

2%1 corresponds to the non-penetration of the
cholesteric structure into the smectic A region. Since

h= (hm Ó 2 ) ( 2C exp Y )/( 1 + C
2 exp 2Y ) , (Y <0 ).

k =l2 /j), very small values of k are obtained as a result
(A9) of the small value of the penetration length relative to

the correlation length; this also means small penetration
The integration constant C is determined by the con-

of the cholesteric structure as given by the particular
dition Y =0, h=hm and one has C =Ó 2 Ô 1. The good

solution we discussed at the beginning of this Appendix.
choice of the sign is+ as can be seen by the fact that Y

Thus for type I smectics A, one has only to solve
is an increasing function of h (since we chose dh/dY >0 ).

equation (B2) and calculate (B1). The solution of (B2)
Near Y =0 we develop the function h(Y ) and ® nd

is found in two steps: in the ® rst, one multiplies (B2) by
d f/dY and integrates (taking into account the limits thath$hm ( 1 + Y / Ó 2 ) $ hm exp (Y / Ó 2 ). (A10)
we chose)

The free energy g of the wall is given by equation (25)
reproduced below 1/4 Õ f

2
/2 + f

4
/4 = ( 1/2k

2
) (d f /dY )

2 (B3)

or
g/4 =l2j

2
)q

2
s P dh/dY (dh/dY Õ q0l2 ) dY (A11)

(k
2
/2 ) ( 1 Õ f

2
)
2= (d f/dY )

2 (B4)
which can also be written

which has the following solution (the second step)

g/4 =l2j
2
)q

2
s P [ (dh/dY ) Õ q0l2] dh (A12) f (Y ) = Õ th ( Ó Y k/2 ) . (B5)

The calculation of (B1) is easy using equation (B4 )when the integraton limits are from Y = Õ 2 to Y =2
and one obtains g = (4 Ó 2/3)j).in (A11) and from h=0 to h=hm in (A12). The integral

(A12) can be calculated with the help of (A7) and one
Appendix Cobtains a cumbersome expression. However in the limit

In this Appendix, we shall brie¯ y indicate how oneof small hm (hm <0.1 ) one ® nds that g is equal to Õ 1.1l2 .
passes from the original expression (18) for the wallFor larger hm , the wall energy g is also dependent on
energy g to that given by equation (29). One multiplieshm or on the products j

2
)q

2
s or l

2
2 q

2
0 which makes the

the ® rst Euler± Lagrange equation (21 a) by f and usesanalogy with superconductors less strong.
the following identity

Appendix B
f (d2

f/dY
2
) =d( f d f/dY )/dY Õ (d f/dY )

2 (C1)Among the solutions of the Euler± Lagrange equations
(21 a) and (21 b), there is one in which the two functions giving
f (Y ) and h(Y ) are such that where f is di� erent from 0,

1/k
2
(d f/dY )

2= f
2 Õ f

4 Õ j
2
)q

2
s f

2 sin2
hh=0 and where h is di� erent from 0, f =0. One can

see that there is complete absence of penetration, since + 1/k
2 d( f d f/dY )/dY . (C2)

the two structures (cholesteric and smectics A) coexist
without a region where a mixture of both phases is One then replaces 1/k

2 (d f/dY )
2 in (18) by the right side of

present. In such a case (in our choice of the geometry), equation (C2) and performs the integration of the term
h is null for Y <0 and for Y >0 increases linearly with d ( f d f/dY )/dY which is zero because of the integration
the slope l2q0 . On the other hand (Y <0 ) f decreases limits: for Y = Õ 2, d f/dY =0 and for Y =2, f =0. In
when Y increases from Õ 2 until it becomes null for this way, one obtains the ® nal expression (29).
Y > 0. The wall energy given by equation (24) reduces
to

Appendix D

To solve numerically the Euler± Lagrange equations
g/4 =l2 P 1/k

2
(d f/dY )

2 dY (B1) (21 a,b) we used an iteration method. We chose 101 points
on the Y axis equivalent to 10 times the penetration
length, i.e. Y varies between 0 and 10 and the interval hwhich is just the limit of g when k

2%1. The system of
di� erential equations (21 a,b) reduces to one equation between two points is 0.1. The equations (21 a) and
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515T he cholesteric ± SmA transition

(21 b) are replaced by a value of h j+1 using (D4). The process is repeated until
convergence is reached. This is checked by calculating

Õ fj + f
3
j + a

2
(sin hj )

2
fj= ( f j+1 Õ 2 fj + f j Õ 1 )/(k

2
h

2
)

after each iteration the di� erence between the mean
(D1) values of the two sides of the ® rst integral (23). The

number of iterations may vary from 100 to 1000.
f

2
i sin hj cos h j= (hj+1 Õ 2hj +h j Õ 1 )/h

2
. (D2)

Once we have the list of the fj and h j values, the
The equations (D1) and (D2) can be also written as calculation of the integral (18) is trivial.

f j=
1

2
[ fj+1 + fj Õ 1 Õ h

2
k

2
(Õ fj + f

3
j + a

2
(sin hj )

2
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